|
APEMoST
|
Functions | |
| double | calc_vector_sum (const gsl_vector *v) |
| double | calc_vector_squaresum (const gsl_vector *v) |
| gsl_vector * | dup_vector (const gsl_vector *v) |
| gsl_vector * | calc_normalized (const gsl_vector *v) |
| int | calc_same (const gsl_vector *a, const gsl_vector *b) |
| void | max_vector (gsl_vector *a, const gsl_vector *b) |
| void | min_vector (gsl_vector *a, const gsl_vector *b) |
| void | sort (gsl_vector **vs, unsigned int nvectors, unsigned int vector_size) |
| double | min_column (const gsl_matrix *m, const unsigned int i) |
| double | min_row (const gsl_matrix *m, const unsigned int i) |
| double | max_column (const gsl_matrix *m, const unsigned int i) |
| double | max_row (const gsl_matrix *m, const unsigned int i) |
| double | xbar (const gsl_vector *x) |
| double | xbar_j (const gsl_matrix *x, const unsigned int j) |
| gsl_vector * | linreg_n (const gsl_matrix *x, const gsl_vector *y, double *d, const gsl_vector *weights) |
| double | calc_deviation (const gsl_matrix *x, const gsl_vector *y, const gsl_vector *k, const double d, const gsl_vector *weights) |
| double calc_deviation | ( | const gsl_matrix * | x, |
| const gsl_vector * | y, | ||
| const gsl_vector * | k, | ||
| const double | d, | ||
| const gsl_vector * | weights | ||
| ) |
n-dimensional weighted square deviation
References assert.
Referenced by markov_chain_calibrate_multilinear_regression().
| gsl_vector* calc_normalized | ( | const gsl_vector * | v | ) |
normalizes the vector, i.e. the values are scaled so that the sum of all values is 1
The caller has to free the returned vector.
References calc_vector_sum(), dup_vector(), r, and require.
| int calc_same | ( | const gsl_vector * | a, |
| const gsl_vector * | b | ||
| ) |
References assert.
| double calc_vector_squaresum | ( | const gsl_vector * | v | ) |
sums the squared values
| double calc_vector_sum | ( | const gsl_vector * | v | ) |
sums the values
Referenced by calc_normalized().
| gsl_vector* dup_vector | ( | const gsl_vector * | v | ) |
returns a duplicate.
The caller has to free the returned vector.
References assert, r, and require.
Referenced by burn_in(), calc_beta_0(), calc_normalized(), calibrate_rest(), markov_chain_step(), restart_from_best(), update_min_max(), and write_calibration_summary().
| gsl_vector* linreg_n | ( | const gsl_matrix * | x, |
| const gsl_vector * | y, | ||
| double * | d, | ||
| const gsl_vector * | weights | ||
| ) |
| double max_column | ( | const gsl_matrix * | m, |
| const unsigned int | i | ||
| ) |
given the first index of the matrix, iterate through the second to find the largest entry
Referenced by markov_chain_calibrate_quadratic().
| double max_row | ( | const gsl_matrix * | m, |
| const unsigned int | i | ||
| ) |
given the second index of the matrix, iterate through the first to find the largest entry
| void max_vector | ( | gsl_vector * | a, |
| const gsl_vector * | b | ||
| ) |
| double min_column | ( | const gsl_matrix * | m, |
| const unsigned int | i | ||
| ) |
given the first index of the matrix, iterate through the second to find the smallest entry
Referenced by markov_chain_calibrate_quadratic().
| double min_row | ( | const gsl_matrix * | m, |
| const unsigned int | i | ||
| ) |
given the second index of the matrix, iterate through the first to find the smallest entry
| void min_vector | ( | gsl_vector * | a, |
| const gsl_vector * | b | ||
| ) |
| void sort | ( | gsl_vector ** | vs, |
| unsigned int | nvectors, | ||
| unsigned int | vector_size | ||
| ) |
| double xbar | ( | const gsl_vector * | x | ) |
Referenced by linreg_n().
| double xbar_j | ( | const gsl_matrix * | x, |
| const unsigned int | j | ||
| ) |
Referenced by linreg_n().
1.7.3